Mutually unbiased maximally entangled bases in $$\mathbb {C}^d\otimes \mathbb {C}^{kd}$$ C d ⊗ C k d
نویسندگان
چکیده
منابع مشابه
Computing minimal interpolants in $C^{1, 1}(\mathbb{R}^d)$
We consider the following interpolation problem. Suppose one is given a finite set E ⊂ R, a function f : E → R, and possibly the gradients of f at the points of E. We want to interpolate the given information with a function F ∈ C(R) with the minimum possible value of Lip(∇F ). We present practical, efficient algorithms for constructing an F such that Lip(∇F ) is minimal, or for less computatio...
متن کاملOn mutually unbiased bases: Passing from d to d dimensions
We show how to transform the problem of finding d + 1 mutually unbiased bases in Cd into the one of finding d(d+1) vectors in Cd 2 . The transformation formulas admit a solution when d is a prime number.
متن کاملFrames for subspaces of $\mathbb{C}^N$
We present a theory of finite frames for subspaces of C N. The definition of a subspace frame is given and results analogous to those from frame theory for C N are proven.
متن کامل$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$
Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information Processing
سال: 2015
ISSN: 1570-0755,1573-1332
DOI: 10.1007/s11128-015-0980-6